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Abstract

In this thesis, we discuss the implementation, characterization, and evaluation of a
new computational model for human vision. Our goal is to understand the mech-
anisms enabling invariant perception under scaling, translation, and clutter. The
model is based on I-Theory [50], and uses convolutional neural networks. We inves-
tigate the explanatory power of this approach using the task of object recognition.
We find that the model has important similarities with neural architectures and that
it can reproduce human perceptual phenomena. This work may be an early step
towards a more general and unified human vision model.
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Chapter 1

Introduction

The human brain contains the most powerful visual system in the world. By under-

standing human vision, we can gain scientific insight into human cognition. We can

also inspire engineering efforts that seek to build artificial intelligences. These ben-

efits come from building models, abstractions that capture what we know about the

brain. Computational models are of particular interest, since they are both precise

and testable.

This thesis presents a new computational model, representing the feedforward

pathway of the human visual system. This means that we only consider a ‘one-way’

flow of information, from the eye through the brain’s ventral visual stream [57, 64].

In addition, we only consider performance resulting from a single saccade, or view of

the world. We exclude longer-term feedback-based neural processing, as well as the

potential for multiple saccades. Studies suggest that this subset of the visual system

can account for key aspects of human and primate visual performance [57, 39, 26]. In

particular, it explains human performance on object classification tasks.

In object classification, a test subject is shown a series of objects. For each object,

they must categorize it as an exemplar from a class of objects. The set of classes is

mutually exclusive and known ahead of time, and the test subject might be trained

prior to the actual task. Successful classification requires both selectivity in mapping

objects to classes, and invariance to image transformations [54]. Humans are known

to be extremely skilled at such tasks, even in complex settings [64, 39]. In addition,
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classification tasks can easily be generalized between humans and computers. Thus,

object classification is a suitable medium for evaluating computational models against

the human visual system.

In order to perform object classification, our model uses convolutional neural

networks (CNNs). Recently, CNNs have achieved state-of-the-art performance in

large-scale object classification [33, 61, 19]. Additionally, they represent the state-of-

the-art for explaining primate neural activity in the inferior temporal cortex (IT) [64].

IT is one of the highest-level regions in the ventral stream [64, 57]. Thus, CNNs may

provide an effective way of modeling the human visual system.

We present a CNN-based computational model of the feedforward pathway of

the ventral stream. Our work builds on I-theory [50], which postulates mechanisms

for transformation-invariant image representation in the human brain. Our model

explains human psychophysic phenomena relating to object recognition. In particular,

it demonstrates properties of translation- and scale-invariance, as well as performance

in cluttered scenes, that are observed in human vision. The model also fits data

regarding the structure and function of biological neural networks.

The remainder of this thesis discusses our work in detail. Chapter 2 reviews related

work and provides conceptual grounding for our model. Chapter 3 discusses the

actual implementation of the model. Chapters 4 and 5 focus on evaluating the model

against human psychophysical phenomena. Chapter 6 assesses our work, compares it

to previous approaches, and synthesizes contributions. Finally, Chapter 7 proposes

future work.
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Chapter 2

Background and Related Work

Our work relies on three main pillars: (1) studies of human vision, especially regarding

the feedforward pathway of the ventral stream; (2) the HMAX computational model

of the feedforward pathway [58, 57, 28, 27]; and (3) convolutional neural networks

(CNNs) for object recognition [35, 33].

2.1 Human Vision Studies

The human visual system shows high levels of selectivity and invariance. We can

correctly recognize a tremendous variety of objects, even when they are transformed

(e.g. scaled and shifted) [53, 40]. In addition, we can recognize objects in a variety of

contexts, i.e. in cluttered scenes (though this ability has limitations [63, 49]). These

abilities generally do not require supervised training for every view of each object.

We can see this intuitively—one can recognize a face from a photograph or from a

small amount of experience. It is not necessary to see every possible transformation,

in every possible context, while repeatedly being told, ‘this is Francis.’

Thus, the brain must have a strong ability to generalize, learning a great deal from

only a few samples. Logothetis et al. [40] note that it could be feasible, for instance, to

store a few views of each object and interpolate between them to recognize all possible

views. If we suppose that humans can combine this ‘view-based’ approach with scale-

and translation-invariance, this results in a mechanism for strong generalization across
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scales, shifts, and rotations. Biological studies have provided evidence in favor of this

mechanism and have testified regarding its speed and accuracy.

2.1.1 Neural Mechanisms of Object Recognition

Non-human primates have some human-like brain structures [54, 57, 10] and exhibit

similarly powerful object recognition capabilities [57]. Studies of them can therefore

inform our understanding of human vision.

For instance, Logothetis et al. [40] studied the neural responses of monkeys dur-

ing object recognition. They trained the monkeys to recognize new types of objects,

which the monkeys had never seen before. During recognition, activations of neurons

in the animals’ inferior temporal cortex (IT) were recorded using electrodes, since IT

is important to this task [40]. The researchers found many neurons whose activity

correlated with particular views of particular objects. Notably, some of these view-

tuned units (VTUs) [53] showed selectivity properties [40]. That is, their response

was highest at some ‘optimal view,’ and decayed when an object was rotated away

from this view. The decay was proportional to the size of the rotation. Such neu-

rons therefore activated strongly in response to a relatively narrow subset of possible

views [40], suggesting that the brain stores a few views and uses interpolation.

In addition, the same study observed translation- and scale-invariance. IT neurons

would sometimes ‘recognize’ objects at scales and translations not previously seen,

without requiring eye movements [40, 53]. In fact, the average IT neuron was found

to be translation-invariant for ∼2∘ shifts and scale-invariant for ∼1-octave scalings in

either direction [53].

Taken together, these results suggest (1) that neurons become adapted for object

recognition through experience, e.g. training; (2) that views of objects are stored

during learning; and (3) that the brain generalizes over scale and translations of an

object, even when these have not been presented previously [40, 53]. This provides

crucial hints regarding how we might model the human object recognition system.

Understanding the timing of visual processes is another key element informing the

development of an effective model.
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2.1.2 Speed of Object Recognition

Neural decoding studies suggest that the primate brain can recognize objects ex-

tremely rapidly. For example, Hung et al. [26] used a machine learning classifier to

decode neural responses in the IT of monkeys during object recognition. The goal was

to infer the category of a presented object, by only considering neural spike counts

from a fixating test subject. 125 milliseconds (ms) after an object was presented, the

classifier could predict its category with 70% accuracy (vs. 12.5% for random guess-

ing). Serre et al. [57] note that this exceptionally short latency provides evidence in

favor of a feedforward stage of object recognition, which they call immediate recog-

nition. They assert that in general, eye movements and top-down processing take

nontrivially longer. Thus, it is reasonable to study object recognition as a one-way

flow of information from the eye through the visual cortex [57].

Liu et al. [39] performed a similar neural decoding study, recording neural activity

from human subjects while showing pictures of objects. In this case, using a support

vector machine (SVM) classifier on electrode recordings, the authors could infer the

category of a presented object after ∼100 ms of neural processing. This was possible

even under scaling and depth-rotation of objects. 100 ms is not enough time, on

average, for an eye movement (saccade)—subjects generally have one view of each

object [39]. In addition, neural back-projections outside of the feedforward pathway

are thought to have significant influence after ∼200 ms of processing [39]. These

findings suggest that the feedforward pathway is responsible for a significant portion

of human object-recognition abilities, showing both selectivity and invariance.

The HMAX computational model explains these observations.

2.2 The HMAX Model

HMAX [57, 58, 28, 27] is a well-studied computational model of the feedforward

pathway of primate vision. HMAX is based on Hubel and Wiesel’s neurological

research on the monkey’s visual cortex [25, 57]. Given an input image, HMAX first

passes it through a grid of 𝑆 units. Each unit applies a Gabor filter to a small patch
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of the image [28]. The Gabor filter is tuned, essentially, to detect alternating black-

and-white bars [17] at a certain scale and orientation [58], and can be used e.g. for

edge detection. Thus, the output of the first 𝑆 layer, 𝑆1, is a grid of filter responses

over the entire image. Filters span a pre-defined set of orientations and scales. This

models the behavior of simple cells in the primate brain [57], described in [25].

The output of 𝑆1 is passed to 𝐶1, a grid of 𝐶 units [58]. Each 𝐶 unit takes input

from all 𝑆 units within a small spatial region and a small set of scales. Its output

is the maximum (MAX) over all of the 𝑆 inputs [58]. Thus, the output of 𝐶1 is a

grid of ‘MAX-pooled’ filter responses over the image. This models the activity of

complex cells in the visual cortex [57], described by Hubel and Wiesel [25]. MAX-

pooling has been shown to be neurologically plausible, and to agree with biological and

computational data [53]. In addition, it explains invariance to scale and clutter [53].

The basic version of the model follows 𝑆1 and 𝐶1 with layers 𝑆2 and 𝐶2 [58]. 𝑆2

performs filtering, like 𝑆1, but learns its filters by “imprinting” activations from train-

ing images (unsupervised learning) [57]. 𝐶2 is another MAX-pooling layer, this time

covering all scales and positions [58]. In the overall hierarchy, alternating 𝑆 and 𝐶

layers respectively build selectivity and invariance [58, 54], computationally meeting

the demands of object recognition. From a neurological perspective, [56] enumerates

plausible neural implementations for these two primitives, additionally showing that

HMAX can explain biological data regarding the ventral stream. Furthermore, ver-

sions of HMAX have improved fidelity by calibrating parameters with physiological

data [27, 57, 58]. The top layers of HMAX can be fed into machine learning classifiers

(e.g. SVM) to perform object recognition from an image [58].

HMAX has exhibited impressive performance as a model. For instance, in [58],

HMAX features were compared with features from scale-invariant feature transform

(SIFT) and histogram of oriented gradients (HOG), two well-known computer vision

techniques [2]. In several object recognition tasks, HMAX features were more de-

scriptive, even in clutter [58]. In addition, HMAX responses correlated heavily with

human performance in a rapid animal vs. non-animal image classification task [57].

This experiment used backward masking in an attempt to restrict processing to the
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feedforward pathway and enable a fair comparison. Finally, activations of high-level

HMAX units were found to predict neural activity in IT [57]. Synthesizing these

results, it seems that HMAX is a reasonably representative model of the feedforward

visual stream.

The advent of convolutional neural networks (CNNs) may enable models that are

even more powerful and descriptive.

2.3 Convolutional Neural Networks (CNNs)

CNNs [33, 35] provide a powerful computing paradigm for object recognition. In

a CNN, an input image is first processed by a convolutional layer [33]. This layer

convolves the image with a set of kernels, outputting a grid of results called a feature

map [35]. The feature map may then be processed by a pooling layer, also known as

a subsampling layer [33, 35]. This type of layer combines outputs of the feature map

that are close together in space, possibly using an average or MAX function [33, 35].

This results in a subsampled version of the feature map, with lower spatial dimension.

Finally, CNNs can have fully-connected layers, where every output of the previous

layer is connected to every input of the next layer, influencing it according to a

parameter called the weight [33, 35]. Intuitively, this allows for the representation of

arbitrary associations. Typically, a fully-connected layer generates the final output

of a CNN [36, 30, 33]. In object recognition, the output is a probability distribution

over possible class labels for an input image. Importantly, the kernels of convolutional

layers and the weights of fully-connected layers are learned in a supervised manner,

using a procedure called back-propagation [35, 23].

After supervised training with a set of class-labeled images, CNNs can significantly

outperform than other object recognition approaches. For instance, when evaluated

on the MNIST handwritten digit dataset [37], CNN-based approaches were superior

to techniques based on linear classification and nearest-neighbors [38]. The best CNN-

based approach yielded an error rate of only 0.7%, near the authors’ estimated human

error rate of 0.2% [38]. Even more impressively, in [33], the authors trained CNNs
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to recognize objects from the ImageNet dataset [55]. This classification task involved

1.2 million training images and 1000 possible object classes. A CNN-based classifier

achieved a top-5 error rate of 15.3%, compared to 26.2% for the nearest competing

approach [33]. Subsequent CNNs have adopted new architectures and optimization

methods [61, 19], achieving ImageNet error rates as low as 3.57% [19]. We believe

that CNNs represent the most powerful existing approach for object recognition.

Moreover, CNNs naturally lend themselves to modeling neural activity in the

brain. Convolutional layers are similar to the 𝑆 layers of HMAX, which in turn

represent simple cells in the brain. Though convolutional layers use learned kernels

rather than pre-tuned Gabor filters, it is known that the first convolutional layer of a

CNN frequently learns Gabor-like kernels [65]. Pooling layers in a CNN are analogous

to 𝐶 layers in HMAX and to complex cells in the brain. Finally, fully-connected layers

allow for brain-like association learning, in an intuitive sense. They could possibly

represent the prefrontal cortex (PFC) [57], a top-level ventral stream area. The PFC

is described in [57] as “involved in linking perception to memory and action.”

A recent study by Yamins et al. [64] quantifies the ability of CNNs to represent

neural activity in the ventral stream. In this study, the authors trained a mixture

of CNNs for object recognition, using it to predict neural activations in the IT of

monkeys. They found that the CNN could predict this activity much more accurately

than any other model, including HMAX [64]. Since IT is the part of the visual

cortex containing the most selective and invariant responses to displayed images [64],

this suggests that CNNs develop somewhat brain-like patterns of activity in object

recognition. Thus, they may be a useful tool for modeling neural activity in the

ventral stream.

2.4 Synthesis of Opportunity

Considering the literature reviewed above, we believe that CNNs provide a promising

opportunity for modeling the feedforward human visual system, in the context of ob-

ject recognition. This requires developing a CNN-based model that is both biologically
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plausible and performant. We aim to have such a model explain the phenomena of

translation- and scale-invariance [40, 53], and performance under clutter [63]. Other

models have attempted to perform the same tasks. However, we believe that our

work is the first to thoroughly evaluate a CNN-based model across the contexts of

invariance and clutter, while maintaining close and explicit ties with the underlying

biology.
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Chapter 3

Our Model

We first discuss the eccentricity theory [50], a pre-existing body of work which provides

the foundation for this thesis. The eccentricity theory is a subset of I-Theory. We

then describe our CNN-based model, which mostly follows the eccentricity theory,

but diverges slightly.

3.1 The Eccentricity Theory

As mentioned in Chapter 2, the brain can learn a great deal from a small amount

of data. In object classification, one would say that it requires low sample complex-

ity [50]. The eccentricity theory posits a key mechanism behind this phenomenon—

the ability to recognize objects in a transformation-invariant way [50]. Specifically,

the theory focuses on invariance to translation and scale.

In particular, the theory proposes that the brain prioritizes scale-invariance over

translation-invariance [50]. It relies on the premise that for any given object, there

exists a minimum scale 𝑠𝑚𝑖𝑛 and a maximum scale 𝑠𝑚𝑎𝑥 at which an organism can

recognize the object [50]. As long as the optical hardware is not infinitely powerful,

this must be true. Then, at the minimum scale 𝑠𝑚𝑖𝑛, there exists a set of translations

(the “translation set” 𝑆𝑚𝑖𝑛), for which the organism can recognize the object [50].

A translation is defined by its eccentricity 𝑥—eccentricity is just the distance of an

object from the center of focus. Since humans focus with the center of our field of
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vision, we presumably achieve minimum-scale recognition where 𝑥 = 0. Thus, we can

think of 𝑆𝑚𝑖𝑛 as all translations from −𝑥𝑚𝑎𝑥 to 𝑥𝑚𝑎𝑥, for some maximum translation

𝑥𝑚𝑎𝑥 (this will clearly be centered at 𝑥 = 0) [50]. According to the eccentricity the-

ory, all elements of 𝑆𝑚𝑖𝑛 should then be recognizable under arbitrary scaling (without

translation), up to 𝑠𝑚𝑎𝑥 [50]. We call this the scale-invariance requirement.

We can understand the implications of this requirement by considering the geom-

etry of scaling. Consider an object at scale 𝑠 and position 𝑥. When this object is

scaled (i.e. its distance to the observer changes), its apparent scale and position both

change [50]. As a demonstration: one can try the following experiment:

1. Find a reasonably spacious room and locate an object on the wall (e.g. a light

switch).

2. Visually fixate on a point on the wall, approximately 10 cm away from the

object. Stand facing the wall, about one meter away, oriented towards the

fixation point.

3. Try walking directly towards or away from the wall, maintaining the same point

of fixation. Observe the target object using peripheral vision.

In the above experiment, one will notice two effects: (1) the object appears to grow

larger or smaller (scaling); (2) the object appears to move towards the point of focus

when decreasing in scale, and away from it when increasing in scale (translation).

That is, the object’s perceived eccentricity (distance from the center of focus) is

linearly related to its scale (distance from the viewer) [50]. This effect disappears at

the center of focus, where an object will not translate under scaling [50]. See [50] for

further details.

Under these principles, for any recognizable object, the set of recognizable scales

and shifts can be represented as an inverted truncated pyramid in the scale-space

plane (Figure 3-1) [50]. The shape of the pyramid reflects the geometry of scaling—

when an object outside of the center of fixation is viewed, its apparent eccentricity

grows as its viewing distance decreases [50].
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Figure 3-1: Inverted truncated pyramid. The 𝑋-axis is eccentricity; the 𝑆-
axis is scale. Suppose an organism can recognize an object at some scale 𝑠𝑚𝑖𝑛, at
eccentricity 𝑥𝑚𝑎𝑥. Then, as it moves closer to the object, the object’s “trajectory”
in the scale-space plane will follow the right edge of the inverted pyramid, up to
𝑠𝑚𝑎𝑥 [50]. Suppose further that at scale 𝑠𝑚𝑖𝑛, the organism can recognize the object
at all eccentricities 𝑥 where |𝑥| ≤ |𝑥𝑚𝑎𝑥|. This is called the ‘translation set,’ 𝑆𝑚𝑖𝑛 [50]
(this captures the shift-tolerance of the organism at the minimum scale). Then, the
associated “scaling trajectories” will fill the pyramid, as shown [50]. If an organism can
recognize everything in the pyramid, it will satisfy the scale-invariance requirement.
(Figure is from [50].)

The eccentricity theory additionally assumes that the scales and positions in the

inverted truncated pyramid are sampled by Gabor filters, which provide optimal

translation- and scale-invariance [50]. This is compatible with biological observa-

tions of simple cells in the brain [58, 24]. The model conjectures that the number of

sample points at each scale is constant, as shown in Figure 3-2 [50]. This would allow

seamless sharing of representations among different scales.

Of course, a logical question to ask is, ‘Why prioritize scale-invariance?’ In re-

sponse, [50] observes that it is energetically inexpensive to move the head or eyes of

an organism to adjust for object translation, but much more fatiguing to move the

body and adjust distance to objects. Thus, it is reasonable to support maximum

generalization over scale, under optical constraints.

The eccentricity theory concludes that the human eye only needs to support

maximum-resolution processing in a small central area called the foveola, supporting

small-scale recognition [50]. This is represented by the lowest and most densely sam-

pled pyramid layer in Figure 3-2. By definition, the foveola is at the very center of the
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Figure 3-2: Sample points in the inverted pyramid. The 𝑋-axis is eccentricity;
the 𝑆-axis is scale. Each red dot represents the center of a Gabor filter. In this
specific example, each scale has 40 filters. There are 7 ‘scale channels’ numbered
from 1 to 7, increasing linearly in diameter from 7∘ at the bottom to 49∘ at the top.
Gabor filter sizes also increase linearly. In the theory, filters have half overlap [50].
Together, the filters cover the eccentricities and scales in the pyramid, satisfying the
scale-invariance requirement. This is based on a figure from [50].

fovea, which is the small central area (estimated to be < 10∘ in diameter) of the visual

field [50, 25, 1]. Besides the foveola, there can then be wider arrays of larger-scale,

lower-resolution processing units, extending to the periphery (see Figure 3-2) [50].

This arrangement allows for generalization within the inverted pyramid, maintaining

the scale-invariance requirement [50]. Notably, this does not require high-resolution

processing across the entire visual field. The last property may be desirable due to

resource constraints [50].

Given the sampling pattern of Figure 3-2, the eccentricity theory relies on pooling,

both over space and scale, as a mechanism for achieving invariance [50]. It estimates

about 4 stages of pooling, at major parts of the ventral stream [50]. As in the

basic version of HMAX [58], each round of pooling follows a round of filtering, and

processing is fundamentally feedforward [50].

Measurements of neural receptive field (RF) sizes in the ventral stream seem to

support the theory. Figure 3-3 (originally from [10], displayed here for convenience)

shows a summary of macaque monkey RF measurements. As the figure shows, RF

sizes increase along the ventral stream, from V1 to V2 to V4. Furthermore, [7] asserts

that IT neurons have RFs of 10∘ to 30∘ when measured with “standard RF mapping
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methods.” This is slightly larger than the range of V4 RFs in Figure 3-3, suggesting

another RF size increase from V4 to IT. Since information flows from V1 to V2 to

V4 to IT in the ventral stream [57], these data suggest at least one pooling stage per

location. Intuitively, pooling increases spatial invariance, leading to larger RFs. This

is consistent with the 4 stages of pooling in the eccentricity theory.

Figure 3-3: a. Measured receptive fields (RFs) of macaque monkey neurons.
V1, V2, and V4 are progressively higher areas of the ventral stream; lines attempt
to fit data points [10]. Increasing RF size in higher visual areas suggests progressive
spatial pooling. b. Probable spatial arrangement of RFs in V1, V2, and V4,
considering biological data. The larger the eccentricity, the larger the RF. The
data are roughly consistent with chevron sampling, discussed in [50] and shown in
Figure 3-4. Plots (a) and (b) are both from [10], and show data from [12] and [13].

Figure 3-3 also shows that RF sizes tend to increase linearly with eccentricity.

This agrees with the theory (see Figure 3-2). However, if we consider the V1 RFs

in Figure 3-3b, it seems that there are ‘large’ RF sizes that are represented in the

periphery, but not in the fovea. This disagrees with Figure 3-2, which suggests that

all RF sizes should be present in the fovea. The eccentricity theory explains this

observation by conjecturing that larger scales of processing are restricted to the pe-

riphery [50]. This changes the inverted pyramid into a ‘chevron’ (Figure 3-4) [50].

This adaptation can be justified by considering the possibility of resource constraints

in the brain [50]. With ‘chevron sampling,’ processing power is saved by restricting

the number of scales processed at each eccentricity.

To summarize, the eccentricity theory unifies geometric and neurological observa-

tions into a biologically plausible model of visual processing. It makes a number of

predictions regarding visual performance under scaling, shift, and clutter [50]. The
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Figure 3-4: Chevron sampling. The 𝑋-axis is eccentricity; the 𝑆-axis is scale.
The dimensions of scale channels and filters are the same as in Figure 3-2. However,
some scale channels do not cover all eccentricities (e.g. observe the large gap in the
7th channel). The eccentricity theory imposes a “constant difference” requirement,
stating that, “there is a constant difference between the largest and smallest scale at
each eccentricity” [50]. In this example, at most two scales are active at any given
eccentricity—we say that the chevron parameter, 𝑐, is 2. This means that the gap in
channel 3 is exactly the size of channel 1, the gap in channel 4 is exactly the size of
channel 2, etc. This satisfies the “constant difference” requirement mentioned above.
Note that the light gray central region is an inverted pyramid, similar to Figure 3-2.
This is based on a figure from [50].

following section describes our model, which implements the theory. We use the

model to evaluate the predictions from [50].

3.2 The Model

Our CNN-based model is built to recognize grayscale handwritten digits from the

MNIST dataset [38, 37]. This dataset is very lightweight, allowing for rapid training

and testing. In addition, the task is difficult enough to reasonably evaluate the model.

Here, we discuss the most important aspects of our architecture. Appendix A provides

supporting details.

3.2.1 Architecture

Our model takes in grayscale images and outputs a 0-9 prediction of what digit is in

a given image. Unlike a traditional ‘flat’ CNN operating at one scale, our model uses
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a CNN operating at 7 different scales. It has 13 processing layers in total.

An input image first encounters 4 rounds of 𝑆-𝐶-type processing. Each contains

(1) a convolutional layer, followed by (2) a spatial pooling layer, followed by (3)

a layer of pooling over scales. The last scale pooling layer is followed by a single

fully-connected layer with 10 outputs (one for each possible digit class). The four

convolutional layers and the fully-connected layer are learned with back-propagation.

Note that our model has the same number of 𝑆-𝐶 layers as is estimated in the

eccentricity theory [50]. This is also close to the estimated number of processing

layers in the ventral stream (𝑂(10)) [9, 57].

Figure 3-5 illustrates a simplified version of our model, emphasizing the main

operations involved. We describe each processing stage in depth here.

Figure 3-5: Simplified version of our model. This network contains the same basic
building blocks as our final model, but is greatly simplified for clarity. conv layers
perform convolution, spatial-pool layers perform spatial pooling, and scale-pool
layers perform scale pooling. See Subsection 3.2.1 and Appendix A for more details.
Note: this figure shows a model using 3 scales of input and performing 2 rounds of
convolution and scale/space pooling. Our final model takes input at 7 scales and
performs 4 rounds of convolution and scale/space pooling.
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Input Data

As suggested by the eccentricity theory [50], our model processes input at many scales.

More precisely, it takes in 7 crops of a given input image, one per scale channel. For

our purposes, a crop is just a centered square cutout of an input image. Figure 3-

6 shows the 7 input crops. Each crop is 83×83 pixels (px)—data are upsampled

or downsampled as necessary to satisfy dimensions. Given the 28×28 px MNIST

digits [37], an 83×83 px image size allows us to construct recognition tasks with

scaling, translation, and clutter, without downsampling the digits beyond recognition.

As shown in Figure 3-5, each crop is initially processed by a separate ‘scale channel,’

with its own convolution and spatial pooling layers. Subsequent scale pooling may

combine the scale channels, so that fewer channels remain.

Figure 3-6: Model input: 7 crops of an image. Each crop is 83×83 px, with
upsampling and downsampling conducted as necessary. Crops increase linearly in size
from 1 (smallest) to 7 (largest)—crop 7 is exactly 7 times the size of crop 1. Crop 𝑖
corresponds to scale channel 𝑖 in Figure 3-2.

We use our input data to implement ‘chevron sampling’ (see Figure 3-4), constrain-

ing the network so that at most 𝑐 scale channels are active at any given eccentricity.

For a given crop, this simply means zeroing out all data from the crop 𝑐 layers below.

For example, consider crop 3 in Figure 3-6. With 𝑐 = 2, we would take the area of

crop 3 that is also covered by crop 1 (a square region in the center), and replace this

area with all zeros (i.e. the black background). Thus, the first convolutional layer

in crop 3 effectively does not ‘see’ anything in that area. We use 𝑐 = 2 for every
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simulation, except when exploring the effect of 𝑐 in Section 4.4.

In order to facilitate comparison with human data, we developed a correspondence

between image dimensions and physical dimensions. In our model, 83 px corresponds

to 7∘ of visual angle, as viewed from a distance of 50 cm. Thus, 1∘ of visual angle is

≈12 px at the highest resolution. Crop sizes increase linearly in width by 7∘ per crop,

from 7∘ at crop 1 to 49∘ at crop 7 (see Figure 3-6). This corresponds to a total field

width of ≈46 cm at crop 7. We use 7 linearly spaced crops to approximate the linear

increase in RF diameters with eccentricity [50]. The minimum crop size approximates

the estimated fovea size in [50], and the maximum crop size reaches over 20∘ into the

periphery. This allows us to replicate human experiments that involve both the fovea

and the periphery [5, 1, 25, 50].

Note that our model’s resolution is far lower than human vision. According to [42],

the smallest human visual channel has at least 120 cone cells per degree of visual angle,

an order of magnitude higher than our model’s 12 px per degree. Though this reduces

the fidelity of our model, it also allows for faster training and testing. This in turn

allows for more simulations and iterations, to explore the parameter space. It would

be relatively trivial to increase our model’s resolution.

Convolution and Spatial Pooling Layers

The first convolutional layer, conv1, uses a kernel of size 5×5, with stride 2. This

allows for 40×40 outputs in the first layer, with approximately half overlap between

the filters, which follows the eccentricity theory’s assumption [50]. Additionally, a 5×5

kernel allows for a rough approximation of the major features of a Gabor filter [17].

See Appendix A for examples of learned filters from conv1.

The first spatial pooling layer, spatial-pool1, uses a kernel of size 3×3, with

stride 1. Thus, its RF diameter is approximately twice that of a convolutional unit.

This follows the Hubel and Wiesel study on the primate brain [25], which found

that complex cell RFs were about 1.5 to 2 times as wide as simple cell RFs. As

in HMAX [53, 58], all pooling units perform the MAX operation, where the output

is the maximum activation among the cells in the kernel. This basic paradigm of
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convolution and MAX-pooling is known to perform well on digit recognition [30, 36]

and natural image recognition [33].

In the following conv and spatial-pool layers, we use a 5×5 kernel with stride

1 for convolution, and a 3×3 kernel with stride 1 for pooling. Note that the kernels

of these units always ‘overlap,’ even though the eccentricity theory suggests 2×2

‘non-overlapping’ pooling [50]. We have a few reasons for this choice. First, such

‘overlapping’ units intuitively preserve information and learning potential, by pooling

over more sets of activations. Second, they have been used in high-performing neural

networks [35, 38, 36, 33, 30]. Third, they mirror Hubel and Wiesel’s finding of cells

with overlapping RFs in the primate visual cortex [25].

Every conv and spatial-pool layer in each scale channel produces 32 channels

of output. This allows for the learning of Gabor filters at various orientations and

phases in conv1, and for the learning of various higher-level features in subsequent

layers. In addition, conv units in the same layer are constrained to share weights

across scale channels. We guarantee this during back-propagation by averaging the

error derivatives over all scale channels, then using the averages to compute weight

adjustments. We always apply the same set of weight adjustments to the conv units

across different scale channels. All conv units use the ReLU non-linearity function,

which has been shown to improve convergence rates in image recognition [33].

Table 3.1 shows the minimum and maximum possible RF diameter at each conv

and spatial-pool layer, assuming no pooling between scale channels. Note that

scale pooling would make RFs irregular and difficult to characterize, since they would

contain information from multiple scales.

As an initial validation step, we plot our model’s relationship between RF di-

ameter and eccentricity (without considering scale pooling), comparing against the

measurements in [10, 12, 13]. We assume that at most two scales are active at each

eccentricity (𝑐 = 2, see Figure 3-4 and explanation of Input Data). Figure 3-7 shows

the results. Note that the slopes and values of conv1 and spatial-pool1 are quite

similar to the estimates for V1 in Figure 3-3. Similarly, V2 in Figure 3-3 has RFs sim-

ilar to conv2 and spatial-pool2, and V4 in Figure 3-3 has RFs similar to conv3 and
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Layer Minimum RF Diameter Maximum RF Diameter
conv1 0.4∘ 3.0∘

spatial-pool1 0.8∘ 5.3∘

conv2 1.4∘ 10.0∘

spatial-pool2 1.8∘ 12.4∘

conv3 2.4∘ 17.1∘

spatial-pool3 2.8∘ 19.5∘

conv4 3.5∘ 24.2∘

spatial-pool4 3.8∘ 26.6∘

Table 3.1: Receptive field (RF) diameters in our model. This assumes no
pooling over scale and rounds to the nearest tenth. Since CNN RFs are square,
‘diameter’ refers to the side length. The minimum RF diameter occurs in crop 1’s
scale channel and the maximum occurs in crop 7’s scale channel (see Figure 3-6).

Figure 3-7: Average receptive field (RF) diameter vs. eccentricity in our
model. The sharp ‘cutoffs’ in the plot indicate transitions between different ‘eccen-
tricity regimes.’ This is a consequence of discretizing the visual field into 7 scale
channels. Note that this ignores pooling over scales, to simplify RF characterization.
Compare with Figure 3-3.

spatial-pool3. In this correspondence, conv4 and spatial-pool4 might map to

IT, and the fully-connected layer might correspond to the pre-frontal cortex (given

the ventral stream model discussed in [57]). Thus, our model seems to reproduce some

aspects of neural organization in the brain.

Note that we have chosen these parameters as a four-way compromise between
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(1) the eccentricity theory, (2) biological data, (3) performance, and (4) simplicity

and ease of understanding. Though we use this parameterization for the bulk of our

simulations, we have explored some variations, as documented in Chapters 4 and 5.

Note that the principal goal of this thesis is to explain and produce intuitions for

human visual phenomena. Rigorous parameter optimization is beyond the scope of

this work, but is discussed in Chapter 7.

For further details on convolution and spatial pooling layers in our model, see

Appendix A.

Scale Pooling Layers

After each spatial pooling layer in our model, we conduct a round of pooling over

scales. This is defined as MAX-pooling over corresponding activations among every

group of 𝑠 neighboring scale channels. Figure 3-8 is a diagram of this operation.

Pooling over scales will reduce the number of scale channels by 𝑠− 1.

Clearly, there are many possible different methods for pooling over scales. While

exploring this space of possibilities, we allowed for some scale-pooling layers to be

inactive, preserving all input scale channels. For clarity, we introduce a convention

for discussing instances of our model with different scale pooling. We refer to a specific

instance with a capital ‘N’ (for ‘network’), followed by four integers. Each integer

denotes the number of scale channels outputted by each scale-pool layer (there are

always 7 scale channels before scale-pool1). For example, consider a model instance

that conducts no scale pooling until the final scale-pool layer, then pools over all

scales. We would call this N7771. The bulk of our results were generated with N6421

(we call this the ‘incremental’ model), and N1111 (we call this the ‘early’ model). See

Appendix A for thorough descriptions of their architectures. We also explore different

scale pooling methods, as documented in Chapters 4 and 5.

Fully Connected Layer

The output of scale-pool4 goes through a fully-connected (FC) layer with 10

outputs. The FC layer’s outputs correspond to 0-9 predictions regarding which digit
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Figure 3-8: Pooling over scale. In this example, we have 𝑠 = 3, such that we pool
over every group of 3 neighboring scale channels. This reduces the number of scale
channels from 5 to 3, i.e. by 𝑠− 1 = 2.

has been seen. This is a standard way of implementing a linear classifier [38]. Though

some versions of the high-performing LeNet digit recognition CNN [38, 30] use multi-

ple FC layers, we seek to confine learning mostly to S-C layers, since these map more

directly onto known architectures in the brain. Our use of a linear classifier mirrors

the neural decoding approaches in [39] and [26], which use support vector machine

(SVM) classifiers with linear kernels.

3.2.2 Implementation

We trained and tested neural networks using the Caffe deep learning library [30].

Our image pre-processing and data formatting was done in C++, heavily relying

on OpenCV [6] and using some modules from Caffe. Since Caffe does not imple-

ment scale channel operations (namely, averaged derivatives and pooling over scales),
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we used pre-existing implementations of these operations, written in the lab using

NVIDIA CUDA. We performed high-throughput simulation and automation using

Python scripts, with the OpenMind High Performance Computing Cluster [43].

Appendix A contains more implementation details.
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Chapter 4

Case Study:

Transformation-Invariant Recognition

This chapter focuses on evaluating the model’s performance under the transformations

of scaling and translation. The general simulation paradigm is as follows: (1) train

the model to recognize MNIST digits [37] at some position and scale, then (2) test

the model’s ability to recognize transformed digits.

This train-test paradigm follows the general approach of some scale- and translation-

invariance experiments in human psychophysics [11, 46]. These experiments used

short presentation times, below 200 ms, with backward masking. This time win-

dow is thought to allow mostly feedforward processing from a single saccade [39],

and backward masking has been used to “block significant top-down effects” [57] and

eliminate afterimages [8]. Thus, it is reasonable for us to treat these experiments as

mostly feedforward, comparing them with our model.

In general, synthesizing the results of psychophysical studies [11, 46, 8] and neural

decoding studies [39, 26, 40, 53], we expect to find scale-invariance over two octaves

at least, while translation-invariance will likely be limited to shifts on the order of a

few degrees (almost certainly less than 8∘ [8, 46, 40]).
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4.1 Simulation: Invariance at the Fovea

This simulation mirrors [40], which used a train-test paradigm combined with neu-

ral recording from IT in primates. Specifically, monkeys were trained to recognize

previously unfamiliar objects, through presentation of centered (foveal) objects at a

‘default’ scale [40, 53]. The subjects were then presented with scaled and translated

versions of the stimuli. Electrode recordings found neurons that were scale-invariant,

over a ∼2-octave range on average [40, 53]. In addition, neurons exhibited an average

translation invariance of ∼2∘ from the ‘default’ centered position [40, 53].

4.1.1 Procedure and Results

We evaluated two instances of our model (See Section 3.2): the ‘early’ model (N1111),

and the ‘incremental’ model (N6421). For comparison, we also tested a a low-

resolution ‘flat’ CNN, and a high-resolution fully-connected network (FCN), both

operating at one scale. See Appendix A for further details on these networks.

We trained the networks to recognize centered digits of 3∘ in height and width.

We used the full MNIST training set of 60,000 digits [37], with around 6,000 labeled

examples for each digit class.

Networks were tested using the full MNIST test set of 10,000 digits [37], with

around 1,000 labeled examples per digit class. To test scale-invariance, we maintained

the centered position of the digits while scaling by octaves (sizes rounded to the

nearest pixel). To test translation-invariance, we maintained the 3∘ height of the

digits while translating. Each test condition evaluated either scale- or translation-

invariance, tested a single scale or translation, and used all 10,000 test digits. We

used an equal number of left and right shifts in translation. Sample data is shown in

Figure 4-1.

Note that MNIST digits are 20×20 px, centered in a 28×28 px black back-

ground [37]. Since we performed all of our calculations relative to the full 28×28

px images, measurements such as digit height and translation may be slightly skewed

in all of our simulations. Since our goal is to perform qualitative evaluations, this
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skew is unlikely to significantly affect our results.

Figure 4-1: Sample data for transformation-invariance simulations. Each
row shows the 7 crops seen by the CNNs, from 1 to 7 (see Figure 3-6). The top row
shows the normal training digits. The middle row shows test digits, with 4 octaves
of scaling. The bottom row shows test digits, translated by 28 px (12 px ≈ 1∘). The
‘flat’ CNN and FCN would see the the rightmost crops only, sampled to the proper
resolution (see Appendix A). Though these seem barely legible on paper (this figure
is not meant to represent the actual resolution of images), they are sufficient to allow
over 90% accuracy in validation after training.

Results are shown in Figures 4-2 and 4-3. The exact amount of ‘invariance’ de-

pends on our choice of threshold. For example, with a 70% accuracy threshold (well

above chance), we observe scale-invariance for a 2-octave range, centered at the train-

ing height (at best). We observe translation-invariance for ∼0.5∘ from the center. Our

threshold may be less permissive than [53], which defined a monkey IT neuron as ‘in-

variant’ if it activated more for the transformed stimulus than for distractors.

4.1.2 Analysis

In general, our model shows prioritization of scale over translation, outperforming

the other networks in scale-invariance, but not in translation-invariance. It shows

scale-invariance over ∼2 octaves, generally agreeing with psychophysical [11] and neu-

rological [39, 26, 40, 53] results. It shows generally less translation invariance than is

observed in neural decoding [26, 40, 53]. However, these values agree in spirit with
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Figure 4-2: CNN performance under scaling at fovea. The ‘incremental’ model
(N6421) shows the most scale-invariance (about two octaves centered at the training
size, depending on threshold), followed by the ‘early’ model (N1111). The other
neural networks perform well on the training scale, but do not generalize to other
scales. Note the asymmetry, favoring larger scales. We hypothesize that this results
from insufficient acuity (see Subsection 3.2.1).

Figure 4-3: CNN performance under translation from center. The two in-
stances of our model show similar translation invariance, which is generally less than
the ‘flat’ CNN and more than the FCN. The ‘amount’ of translation-invariance de-
pends on our choice of threshold, but in general, near-maximal accuracy is achieved
within half a degree of the center.
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the psychophysical study in [46]. Though [46] used training in the periphery instead

of the fovea, it showed statistically significant classification performance variations

for human subjects under translation. This could even occur for shifts of less than a

degree [46], demonstrating incomplete invariance.

We hypothesize that the acuity of our model limits scale-invariance. This can

be fixed by increasing the resolution at the cost of performance. Also, we find that

different parameter settings lead to different invariance properties, as documented in

Section 4.4. In particular, we can increase translation-invariance by simply increasing

spatial pooling ranges.

4.2 Simulation: Limits of Acuity

Since neural RF sizes increase linearly with eccentricity [42, 50], it is reasonable to

suppose that visual resolution decays accordingly, enforcing a bound on the amount of

invariance that can be achieved. This effect was studied by Anstis [1]. Anstis plotted

the “threshold letter height” of human subjects, i.e. the minimum height at which

typed letters were “just identified,” as a function of eccentricity [1]. This resulted in a

linear relationship. In fact, the eccentricity theory predicts this behavior as a “special

case” [50]. Our goal is to verify the correspondence between our model and Anstis’

findings.

4.2.1 Procedure and Results

We sought to find, for a given eccentricity, the minimum digit height at which our

model would learn with a certain ‘threshold accuracy.’ We chose 90% as our threshold,

higher than the 70% threshold used in the previous simulation. Thus, we interpreted

Anstis’ study [1] to suppose that “threshold letters” are identifiable with high confi-

dence.

We trained the ‘incremental’ model (N6421, see Subsection 3.2.1) on MNIST digits

of various heights, at various eccentricities. (The ‘early’ model exhibited qualitatively

similar results.) Each training condition contained the full MNIST training set [37],

37



at a single height and eccentricity. Eccentricity was measured as the distance between

the center point and the innermost edge of the digit. Left and right shifts were used

equally. Again, measurements may be slightly skewed by the small amounts of ‘blank

space’ in MNIST data [37] (see Section 4.1).

For each training condition, we performed validation using the full MNIST test

set [37], at the same height and eccentricity as for training. Some sample results are

shown in Figure 4-4.

We used simple linear interpolation to estimate the minimum digit size needed

for 90% validation accuracy, at each eccentricity. This allows a direct comparison

with [1]. Results are shown in Figure 4-5.

4.2.2 Analysis

Clearly, our model shows the same qualitative trend as [1], with a linear relationship

and higher thresholds near the periphery (presumably because fewer cells are active

there). However, our slope and intercept for the regression line are significantly higher,

despite having the correct order of magnitude. We have a few hypotheses for this

behavior:

∙ The meaning of Anstis’ “threshold height” [1] is uncertain when mapping this

study to the computational domain. If we choose a lower threshold, instead of

90%, we might obtain a lower slope and/or intercept.

∙ As discussed in Subsection 3.2.1, our model has lower acuity than human

vision—a tradeoff chosen to increase performance and allow more thorough

testing and iteration.

∙ Handwritten digits are likely to be more difficult to recognize, compared to

Anstis’ typed letters [1], since they are much less uniform.
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Figure 4-4: Validation results from testing limits of model’s acuity. The
higher the eccentricity, the larger the digit size needed for successful training and
high validation accuracy.

Figure 4-5: a. Acuity vs. eccentricity, as measured by Anstis [1]. The 𝑦-axis
shows the minimum height at which subjects could “just identify” a typed letter; the
𝑥-axis shows eccentricity [1]. Equation of least-squares regression line [1] appears
below. Figure is from [1]. b. Acuity vs. eccentricity in our model. Axes are in
the same units; equation of least-squares regression line appears below.
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4.3 Simulation: Scale vs. Translation

The eccentricity theory makes two predictions about the relationship between scale

and translation [50]. First, it predicts “uniform scale invariance over a fixed range

of scales independently of eccentricity” [50]. Intuitively, since scale channels overlap

over almost all eccentricities, scale-invariance may also persist across eccentricities.

Second, the eccentricity theory predicts that “there will be shift invariance that in-

creases linearly with spatial wavelength” [50]. This can be explained by the notion

that larger spatial wavelengths will be processed by coarser scale channels, which have

wider pooling ranges. This simulation sought to test both predictions.

4.3.1 Procedure and Results

We only considered the ‘incremental’ model (N6421), since this showed more accu-

rate scale-invariant behavior. We duplicated this procedure with the ‘early’ model

(N1111), achieving qualitatively similar results.

To test the first prediction (consistent scale invariance at all translations), we

trained our model using digits of 3∘ in height, randomly shifted along the horizontal

meridian. We used all odd digits from the MNIST training set [37]—about 30,000

labeled examples. Using odd digits allowed us to use the same trained networks as

in Section 5.1—see this section for an explanation. We would expect similar results

if using all MNIST digits.

We tested the trained model using odd MNIST digits from the test set [37], at

various scales and shifts (from the center). Each test condition contained about 5,000

exemplars at a single scale and shift. As before, left and right shifts were equally

represented. Results are shown in Figure 4-6.

To test the second prediction (translation invariance is a constant multiple of

spatial wavelength), we used scale as a proxy for spatial frequency. Intuitively, when a

stimulus is at twice its original scale, all spatial wavelengths double. Thus, we trained

instances of our model using centered MNIST digits [37] from the full training set.

We used various training scales, with each instance receiving exemplars from only one
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scale.

We tested the trained models using shifted digits, always at the same scale as the

training digits. Each test condition used the full test set [37] at a single eccentricity

and scale. Results are shown in Figure 4-7. For comparison, we performed the same

training and testing on the ‘flat’ CNN and FCN, as in Section 4.1. Results appear in

Figures 4-8 and 4-9.

4.3.2 Analysis

Figure 4-6 shows that the first prediction (consistent scale invariance at all transla-

tions) is sometimes correct. Namely, within 10∘ of the center, scales within an octave

of the trained scale are consistently recognized with reasonably high accuracy. How-

ever, recognition of small digits falls off with shift—we hypothesize that acuity limits

invariance. Considering the results in Section 4.2, this observation is unsurprising.

In contrast, recognition of very large digits increases with shift—it is possible that

the larger filters in the periphery are more adapted to this task. Thus, the prediction

from [50] fails to capture some key aspects of performance.

Figure 4-7 shows that the second prediction (translation invariance is a constant

multiple of spatial wavelength) is essentially upheld, allowing some room for interpre-

tation. In other words, though we do not see a perfect linear relationship, the plots

qualitatively support the prediction.

Also, comparing Figure 4-7 with Figures 4-9 and 4-8, we observe that the second

prediction is somewhat upheld by the single-scale networks as well. However, our

model is much more scale-invariant—unlike the single-scale networks, it converges for

all digit sizes. In addition, it is more translation-invariant than the FCN and smoother

than the ‘flat’ CNN in terms of decaying performance with eccentricity. This suggests

that the eccentricity-dependent architecture helps to allow for a reasonable amount

of translation invariance, while smoothing the decay of recognition with eccentricity.
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Figure 4-6: Scale invariance vs. shift from center in our model. The model
shows reasonable scale-invariance within an octave of the training height, given a shift
of ≤10 degrees from the center. We hypothesize that acuity effects account for the
sloped lines at 9, 18, and 144 px.

Figure 4-7: Translation invariance vs. scale in our model. Digit size increases
in octaves. Consider the difference between the ‘50% accuracy intercept’ along the
9 px line, vs. along the 18 px line. For digit sizes ≥ 18 px, doubling the digit size
also approximately doubles the distance between the ‘50% accuracy intercept’ for the
larger size and the ‘50% accuracy intercept’ for 9 px.
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Figure 4-8: Translation invariance vs. scale in ‘flat’ CNN. Digit size increases in
octaves. The ‘flat’ CNN can display more translation-invariance than the model, but
has much more ‘jagged’ behavior under translation. In addition, it does not converge
for the most extreme digit sizes of 9 px and 144 px (flat lines at bottom of plot).

Figure 4-9: Translation invariance vs. scale in FCN. Digit size increases in
octaves. The FCN displays approximately the same relationship as the model, but
with less translation-invariance in general. In addition, it does not converge for the
lowest digit sizes (flat lines at bottom of plot). We attribute the ‘bump’ for 36 px
digits at 18 px shift to chance alignments of filters, producing slightly higher accuracy
in an extraneous way.
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4.4 Parameter Exploration

We repeated some of the above simulations with different parameter settings, to

explore their effects. This could be useful for tuning the model to achieve desired

properties. We varied only one parameter per simulation set, assuming mostly convex

behavior in the parameter space. Though this may not necessarily be fully correct, it

may provide some general intuitions. Training and testing procedures are the same

as in Section 4.1. Our main findings are as follows:

∙ Chevron parameter (see Figure 3-4) directly relates to scale-invariance.

A ‘thinner’ chevron has fewer active scales operating at each eccentricity and

less scale-invariance. A ‘fuller’ chevron therefore has more scale-invariance. A

full inverted pyramid (Figure 3-2) has the most scale-invariance. See Figure 4-10

for simulation results.

∙ Larger spatial pooling ranges increase translation-invariance. Intu-

itively, with wider spatial pooling, features can potentially occupy a larger ‘field

of possibilities,’ without affecting recognition. See Figure 4-11 for simulation

results.

∙ Later scale pooling increases scale-invariance. See Figure 4-12 for sim-

ulation results. Note that the ‘incremental’ model is actually not the most

scale-invariant, though it is a high-performer. We chose to evaluate it both

because it performs well and because it is neurologically plausible, given the

biological evidence in favor of incremental pooling (see Section 3.1).

∙ ‘Incomplete’ scale pooling can result in lower scale-invariance. ‘Incom-

plete’ scale pooling means that the model has multiple scale channels entering

the fully-connected layer. See Figure 4-13 for simulation results. Although

the eccentricity theory suggests pooling to ≈1 scale at the end [50], results imply

that this may not be necessary.
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Figure 4-10: Scale invariance vs. chevron parameter in our model. See Fig-
ure 3-4 for the definition of the chevron parameter 𝑐. ‘All scales’ corresponds to a full
inverted pyramid (Figure 3-2). Scale invariance increases with chevron parameter,
reaching a maximum in the full inverted pyramid. Simulations done with ‘incremen-
tal’ model (N6421).

Figure 4-11: Translation invariance vs. spatial pooling range in our model.
Wider spatial pooling ranges lead to more translation-invariance. We always use
stride 1 pooling. Simulations done with ‘incremental’ model (N6421), 𝑐 = 2 (see
Subsection 3.2.1).

45



Figure 4-12: Scale invariance vs. scale pooling method in our model. Later
scale pooling leads to better performance. The ‘incremental’ model, N6421, is among
the high-performers, and is also neurologically plausible (see text in Section 4.4).
Simulations done with 𝑐 = 2 (see Subsection 3.2.1).

Figure 4-13: Scale invariance vs. scale pooling method in our model, con-
sidering ‘incomplete’ pooling. The model with no scale pooling, N7777, performs
much worse, suggesting that some scale pooling is required for scale-invariance. Sim-
ulations done with 𝑐 = 2 (see Subsection 3.2.1).
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4.5 Synthesis

Our model exhibits significant scale-invariance and limited translation-invariance.

This generally agrees with psychophysical [11, 46, 8] and neurological [40, 39, 26, 53]

studies. Though the psychophysical studies somewhat vary in terms of timing and

masking approaches, many were able to produce results while imposing short (<200

ms) time constraints on recognition-related processes [11, 46, 8, 39], suggesting that

it is valid to compare them to a feedforward model.

We have also characterized our model in relation to the predictions from the ec-

centricity theory [50], mostly finding expected behavior. Acuity effects may account

for much of the unexpected behavior observed in our simulations—this could be reme-

died with a higher-resolution model. In addition, the observations in Section 4.4 could

allow for tuning of the model to better fit biological data.

Qualitatively, these results suggest that the model represents a viable approach

for modeling the feedforward pathway of the human visual system. In particular, it

demonstrates the key properties of scale- and translation-invariance, at approximately

the right levels.
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Chapter 5

Case Study: Recognition in Clutter

Whitney et al. [63] refer to the “deleterious effect of clutter on peripheral object

recognition” as crowding. In other words, crowding is the decay of a subject’s ability

to recognize an object, when it is near other objects [63]. The study of crowding in

human vision has intuitive value, since everyday recognition occurs almost exclusively

in cluttered scenes. In addition, crowding is thought to relate strongly with dyslexia

and other vision-related disorders [15, 63, 49], such that understanding it may have

clinical value [63, 15].

Fortunately, the study of crowding is tractable from a feedforward perspective.

A large number of significant crowding studies have used short presentation times

(≤200 ms) to produce their results [5, 20, 14, 15, 16, 32]. Some have also used

backward masking, as mentioned in the previous chapter [32, 16]. Differences in

specific timing and masking approaches make it difficult to exclusively attribute these

studies’ observations to feedforward processing. However, we look to [39] to justify

applying our feedforward model as a first pass. In particular, it is estimated that

average saccade times fall within ∼300 ms, and that back-projections take ∼200 ms to

have significant impact [39]. Thus, it is reasonable for us to examine crowding from

a feedforward perspective.

Of course, the feedforward model is imperfect. In the absence of a backward

mask (occurring some or all of the time in [15, 5, 20, 32]), subjects may still be

able to perform visual processing in the interstimulus interval (ISI) between the short
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presentation and the report [57]. Thus, the impact of back-projections may not be

entirely excluded [57, 39]. Kooi et al. [32] assessed this effect by performing crowding

experiments both with backward masking (90 ms presentation) and without (150

ms presentation). Though the backward mask produced stronger crowding effects,

qualitative results were similar. This further suggests that feedforward crowding

models can capture key aspects of crowding. We additionally observe that other

feedforward models [4, 59] have been able to explain crowding-related effects. Thus,

we assert that our feedforward approach is a valid step in the study of crowding.

We note that crowding is a complex phenomenon, thought to involve multiple loca-

tions along the ventral stream [63]. Unsurprisingly, there are many models and expla-

nations for crowding, using population coding [18, 62], statistics [31, 4, 10, 45], and at-

tention [20, 45], among other concepts. In fact, the original HMAX model reproduced

crowding effects by implementing eccentricity-dependent receptive fields [28, 27].

Our goal in these simulations is not to propose a new unifying model of crowd-

ing; rather, it is to demonstrate the viability of our approach. CNNs have a unique

advantage over pre-existing tools—they are more powerful and general than other

object recognition techniques [33], and can explain IT responses more than any other

known model [64]. Additionally, as discussed in Chapter 2, CNNs have some func-

tional similarities with cells in the ventral stream, especially when combined with the

eccentricity theory [50]. This combination of generality and neurological plausibility

is well-suited to the study of crowding, which is known to both (1) apply to many dif-

ferent stimuli, and (2) vary strongly based on stimulus characteristics. For example,

crowding is known to affect perception of Gabor patches, letters, and faces [63], which

intuitively seem to be different combinational ‘levels’ of stimuli. Also, its strength is

known to depend partially on stimulus type (letters vs. keyboard symbols in [16, 63]),

and partially on stimulus characteristics like color and shape [32, 63]. A general com-

putational model, capable of recognizing diverse object types, would clearly be an

invaluable tool for the study of crowding.

We performed three simulations to evaluate our model’s ability to explain crowd-

ing. In addition, we investigated the effect of different parameterizations on the
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model’s performance.

5.1 Simulation: Bouma’s Law

Bouma’s Law [5] is sometimes referred to as the essential distinguishing characteristic

of crowding [59, 48, 49]. Bouma’s Law states that for recognition accuracy equal to

the uncrowded case, the spacing between flankers and the target must be at least half

of the target eccentricity (see Figure 5-1). This is often expressed by stating that

the critical spacing ratio must be at least 𝑏, where 𝑏 ≈ 0.5 [63]. Note that stimulus

characteristics can influence the value of 𝑏 [63, 16, 32].

Figure 5-1: Explaining Bouma’s Law of Crowding. The cross marks a subject’s
fixation point. The ‘T’ is the target, and each ‘F’ is a flanker. For recognition
accuracy equal to the uncrowded case, flanker spacing (the length of each red arrow)
must be at least half of target eccentricity. Note that we measure target eccentricity
and flanker spacing in an ‘edge-to-edge’ manner, for compatibility with the original
statement of Bouma’s Law [5, 63, 59]. While it is currently more common to measure
these distances in a ‘center-to-center’ manner, this would require us to express the
Law slightly differently [59]. Note that this choice of convention could slightly skew
our results, relative to other findings.

Canonically, a crowding experiment might show a target and two flankers to the

subject, much like in Figure 5-1 [63, 5]. The subject is asked to name the target (the

middle stimulus). If the results are plotted on curves with constant flanker spacing,

they will resemble Figure 5-2 (from [5], shown here for convenience).

This experimental condition is difficult to replicate with a conventional CNN,

which only gives one classification output. This is because it is non-trivial to specify

a specific stimulus (e.g. the ‘middle’ one) for a feedforward CNN to report, given an

input such as in Figure 5-1. Thus, we used a different task to evaluate our model.
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Figure 5-2: Original Bouma’s Law results. Flanker spacing is held constant. The
bottom curve represents two flankers, as in Figure 5-1, the middle represents a single
flanker on the target’s foveal side, and the top represents an unflanked target. Note
the downward slopes with increasing target eccentricity. Figure is from [5].

5.1.1 Procedure and Results

We trained CNNs on all odd digits within the MNIST training set [37]—a total of

around 30,000 digits, with ∼6,000 exemplars per class. Training digits were randomly

shifted along the horizontal meridian. Crowding experiments often assume that sub-

jects can identify eccentric letters without requiring extensive training [5, 16, 15].

Thus, it is reasonable for us to prepare our CNNs in this way.

When testing networks in clutter conditions, we used even digits as flankers

and odd digits as targets, drawing both from the 10,000 digit MNIST test set [37].

Flankers were always identical to one other. In order to evaluate our model against

Bouma’s Law, we tested several different target eccentricities (1∘, 3∘, 5∘, 7∘, and 9∘)

and flanker spacings (0∘, 2∘, 4∘, 6∘, and 8∘). We evaluated all 25 possible combina-

tions. Each test condition used all ∼5,000 odd exemplar targets and involved a single

target eccentricity and flanker spacing. Targets used an even distribution of left and

right shifts, and we always placed two flankers radially (see Figure 5-1). Sample data

is shown in Figure 5-3.

Since the CNNs were not trained to identify even digits, they would essentially
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Figure 5-3: Sample data for crowding simulations. Each row shows the 7 crops
seen by the CNNs, from 1 to 7 (see Figure 3-6). The top row shows shifted training
digits (note that the shift moves the digit outside of crop 1). The bottom row shows
test digits—the ‘1’ is the target; each ‘2’ is a flanker. Target eccentricity is 7∘; flanker
spacing is 2∘. The ‘flat’ CNN would see the the rightmost crops only, sampled to the
proper resolution (see Appendix A). Though these seem barely legible on paper (this
figure is not meant to represent the actual resolution of images), they are sufficient
to allow over 90% accuracy in validation after training.

never report an even digit class. Thus, we could monitor whether the information

from the odd digit ‘survived’ crowding enough to allow correct classification. In

general, even digits served to clutter odd digits only. The psychophysical analogue of

this task would be an instruction to ‘Name the odd digit’, with a subject having no

prior knowledge of its spatial position.

We evaluated 3 CNNs: the ‘early’ model (N1111), the ‘incremental’ model (N6421),

and the ‘flat’ CNN. We excluded the FCN because it failed to achieve convergence

during training. Results at two target eccentricities are shown in Figures 5-4 and

5-5. The ‘early’ model shows some Bouma-like behavior.

We can view our results from another angle by considering Whitney and Levi’s

description [63], shown in Figure 5-6 for convenience. For comparison, we plot our

results for the ‘early’ model using the same convention in Figure 5-7. Our results

show a similar trend.

5.1.2 Analysis

We do not directly compare the model’s results to Bouma’s original plots—since

our model lacks a selection mechanism, this may not be a worthwhile comparison.
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Figure 5-4: Evaluating our model against Bouma’s Law, 2∘ flanker spacing.
For the ‘early’ model, note the transition from high to low accuracy from 3∘ to 5∘
target eccentricity. This would be consistent with 0.4 ≤ 𝑏 ≤ 0.67. The other CNNs
do not share this property.

Figure 5-5: Evaluating our model against Bouma’s Law, 4∘ flanker spacing.
For the ‘early’ model, note the transition from high to low accuracy, from 5∘ to 7∘
target eccentricity. This would be consistent with 0.57 ≤ 𝑏 ≤ 0.8. The other CNNs
do not share this property.
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Figure 5-6: Whitney and Levi’s description of Bouma’s Law [63]. When
target eccentricity is held constant, we see a quasi-logistic curve of performance,
which saturates at around 𝑏. Figure is from [63].

Figure 5-7: ‘Early’ model performance under clutter. Each line has constant
target eccentricity. We observe the same quasi-logistic trend as is shown in Figure 5-6.
Since the model achieves 94% accuracy in the training condition, we believe that the
‘saturation’ at 70% occurs because we have no mechanism for selecting which digit
to report. Thus, the model sometimes attempts to classify the flankers.
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Nevertheless, the ‘early’ model exhibits qualitatively reasonable behaviors, with a

dropoff of accuracy approximately at the expected points. This cannot be explained

solely by a flanker being in the model’s ‘fovea’—(1) the model was trained with

random shifts covering all eccentricities, so it has no explicit reason to be fovea-

biased; (2) if this were true, then we would expect low accuracy in Figure 5-4 with

target eccentricity 3∘, and in Figure 5-5 with target eccentricity 5∘. These cases would

place a flanker directly on the model’s ‘fovea,’ yet they exhibit high accuracy.

Considering Figures 5-4 and 5-5, our estimates for Bouma’s constant 𝑏 tend to

be somewhat higher than the canonical value of 0.5. However, they are generally

within or close to the interquartile range of 0.3 to 0.7 from published results, found

by Pelli [48, 59]. However, our 𝑏-estimates tend to increase with target eccentricity,

which could indicate an issue with our model. We have not yet produced a principled

hypothesis for this effect.

The most interesting question to ask is, ‘Why does early scale pooling seem to

reproduce the Bouma effect?’ To answer this question, we note that the cortical

magnification factor, i.e. the amount of cortex devoted to processing a given amount

of visual area, decreases with eccentricity [50]. Also, some studies suggest that the

‘critical cortical spacing’ in V1 is constant (∼6 mm) at all eccentricities—if radially

adjacent signatures from two objects are closer than this in cortical space, they will

crowd [49, 47, 63].

In our model, early pooling over scale essentially performs an eccentricity-dependent

mapping from visual space onto cortical space, such that signals from different ec-

centricities are combined in the cortical domain. The subsequent convolutional layer,

conv2, may then ‘decide’ whether the scale-pooled signals are crowded, demanding a

constant amount of ‘cortical spacing.’

This hypothesis also provides an intuition behind the value of 𝑏. To explain this,

we first note that the eccentricity theory “ ‘predicts’ ” Bouma’s Law as a consequence

of the linear relationship between RF size and eccentricity [50]. Using a value of

𝑏 ≈ 0.4, it further observes that this constant matches the slope of V2 RF size, when

plotted against eccentricity [50]. This was also observed in [10], which succeeded in
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computationally predicting crowding effects by modeling V2 (see Figure 3-3). This

implies that V2 may ‘determine’ whether or not signals are crowded. The supposed

involvement of V2 fits neatly with our data—since all scales are combined before V2 in

the ‘early’ model, V2 can indeed ‘determine’ whether features crowd, using a constant

‘critical cortical spacing’ and approximately the right RF size (see Figure 3-7).

5.2 Simulation: Anisotropy

Crowding is known to be anisotropic—radial flankers crowd more than tangential ones

(see Figure 5-8) [63]. Explaining this effect has been somewhat difficult—it has been

asserted that, “Currently, there is no satisfactory explanation for radial-tangential

anisotropy” [45]. The authors of [45] present a possible hypothesis based on saccades,

showing that it can explain radial-tangential anisotropy.

Figure 5-8: Radial versus tangential flankers. The cross marks a subject’s fix-
ation point. Each ‘T’ is a target, and each ‘F’ is a flanker. The left side shows
tangential flanking; the right side shows radial flanking. In this case, target eccentric-
ity and flanker spacing are approximately the same for both. Given proper fixation,
we expect the target on the right to be harder to recognize [63].

Our model enables an alternative hypothesis that does not depend on saccades,

and is therefore more generalizable to the short presentation times of crowding studies.

Specifically, consider the ‘early’ model. Since this model pools over all scales as early

as possible, it may pool more aggressively in the radial direction than in the tangential

direction. This is because scale pooling always combines signals in the same direction

from the center of focus, while spatial pooling operates approximately equally in all

directions. Thus, at least at conv2, radial signals may interfere over longer distances,

compared to tangential signals. This could be a direct result of the full scale pooling
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before conv2 in the ‘early’ model. Such a hypothesis agrees with the observations

in [47], which states that the V1 ‘critical cortical spacing’ is only ∼1 mm in the

“circumferential direction” (near the tangential direction), while it is ∼6 mm radially.

We tested this hypothesis using a paradigm similar to that of Section 5.1.

5.2.1 Procedure and Results

The training and test sets here were nearly identical to those from Section 5.1, with

two principal differences. First, the training digits were randomly shifted vertically

and horizontally, to avoid biasing the model. Second, for each target eccentricity

and flanker spacing, we generated a full test set representing 2 tangential flankers, in

addition to the full test set representing 2 radial flankers (see Figure 5-8). We only

considered the ‘early’ model, N1111, since this produced more correct behavior in the

previous simulation.

We considered all 25 combinations of target eccentricities and flanker spacings, as

in Section 5.1. As before, left and right shifts were equally represented. This yielded

25 test conditions in total. Results are shown in Figure 5-9.

5.2.2 Analysis

We observe the correct radial-tangential anisotropy in our model, as predicted by

our explanation. However, any conclusions at this point are tentative at best—we

have not thoroughly evaluated the diverse possibilities of flanking (e.g. one flanker,

various stimulus types, etc.). We also have not implemented a selection mechanism, as

discussed previously. Nevertheless, this represents a principled explanation of radial-

tangential anisotropy, a key effect in crowding which has historically been difficult to

understand [63, 45].
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Figure 5-9: ‘Early’ model performance under clutter, radial vs. tangential
flankers. In all but one of the 25 test conditions (each with a unique combination of
target eccentricity and flanker spacing), tangential flankers do not crowd as strongly
as radial ones, allowing for better recognition.

5.3 Simulation: Asymmetry

Crowding is asymmetric—in the case of radial flankers, a single flanker towards the

periphery will crowd more than a single flanker towards the fovea, with equal flanker

spacing [63, 5]. Whitney and Levi explain this neatly, observing that, “the far flanker is

actually closer to the target than the near flanker after mapping to cortical space” [63].

A population coding model of crowding successfully used this property to reproduce

the asymmetric effect of crowding [62].

The analogous observation in our model is that pooling regions are larger towards

the periphery. Thus, it may be more likely for peripheral flankers to interfere with the

target, compared to foveal flankers. When we test our model, however, it generally

does not show correct asymmetry properties.
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5.3.1 Procedure and Results

Again, our training and test sets were nearly identical to those from Section 5.1

(we actually used the same trained networks as for Section 5.1). The difference was

that for each target eccentricity and flanker spacing, we generated a full test set

representing one foveal flanker and a full test set representing one peripheral flanker.

We considered both the ‘early’ model, N1111, and the ‘incremental’ model, N6421,

using the same set of 25 test conditions as in the previous simulations.

We find that both models produce the incorrect asymmetry quite consistently.

The only exception is for small flanker spacings and small target eccentricities, where

the ‘incremental’ model sometimes succeeds (see Figure 5-10).

Figure 5-10: ‘Incremental’ model performance under clutter, foveal vs. pe-
ripheral flanker, 0∘ flanker spacing. For small flanker spacings and target eccen-
tricities, the model displays the correct asymmetry. However, it is incorrect in most
cases—when either flanker spacing or target eccentricity grows larger.

5.3.2 Analysis

Though our model largely fails to explain asymmetry, the ‘incremental’ model can

occasionally demonstrate it for small eccentricities and small target spacings. This

suggests that some small part of the phenomenon may be explained by the model. We

59



hypothesize that the model’s lack of a selection mechanism, as discussed previously,

inhibits its ability to explain asymmetry.

5.4 Parameter Exploration

As in Section 4.4, we explored the effects of some different parameterizations. We

summarize a few general trends, assuming mostly convex behavior in the parameter

space. Training and testing procedures are the same as in Section 5.1.

∙ General Bouma’s Law trends persist with larger spatial pooling, but

details somewhat change. See Figure 5-11 for simulation results. The gen-

eral eccentricity-dependence remains correct, but ‘cliffs’ do not necessarily occur

at the same time. This could suggest different values of 𝑏 for each parameteri-

zation.

∙ ‘Early’ scale pooling explains Bouma’s Law most effectively in our

model. See Figures 5-12 and 5-13 for simulation results. The ‘early’ model dis-

plays the most qualitatively correct pattern of eccentricity dependence, by far.

This striking observation implicates early scale pooling as the leading candidate

for explaining Bouma’s Law.

5.5 Synthesis

Our model exhibits some of the properties of human vision under clutter—namely,

Bouma’s Law and radial-tangential anisotropy [63]. However, it fails to reproduce

foveal-peripheral asymmetry [63].

A prominent shortcoming of our current approach is the lack of a selection mecha-

nism, as discussed previously. Even without this mechanism, our model demonstrates

promise in explaining aspects of crowding with a general and biologically plausible

object recognition technique. Future work (see Chapter 7) could address this issue

and further extend our model’s explanatory capabilities.
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Figure 5-11: ‘Early’ model performance under clutter vs. spatial pooling, 4∘

flanker spacing. All pooling uses stride 1. General trends persist across pooling
methods, but the ‘cliff’ occurs at different points, possibly corresponding to different
values of 𝑏. For kernel size 7, we attribute the variations before the ‘cliff’ to noise,
caused by mis-alignment of filters and digits.
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Figure 5-12: Performance under clutter vs. scale pooling method, spatial
pooling with kernel size 3, 4∘ flanker spacing. Only N1111, the ‘early’ model,
clearly displays qualitatively correct eccentricity-dependent behavior.

Figure 5-13: Performance under clutter vs. scale pooling method, spatial
pooling with kernel size 9, 4∘ flanker spacing. N1111, the ‘early’ model, displays
the clearest eccentricity-dependent behavior. All models, except for N7777, seem to
display more correct behavior than Figure 5-12 in general—this implicates spatial
pooling in crowding.
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Chapter 6

Discussion

We have presented a new CNN-based computational model of the feedforward ventral

stream, implementing the eccentricity theory [50]. As documented in Chapters 4 and

5, our model achieves several notable parallels with human performance. In addition,

it uses biologically plausible computational operations [58, 56] and RF sizes (see

Figure 3-7).

By considering two different methods of pooling over scale, both using the same

fundamental CNN architecture, we are able to explain some key properties of the hu-

man visual system. The ‘incremental’ model, N6421, explains scale- and translation-

invariance properties, while the ‘early’ model, N1111, explains Bouma’s Law and

radial-tangential anisotropy. The last achievement could potentially be significant—

previous literature has not produced a widely-accepted explanation of radial-tangential

anisotropy [45, 63]. Furthermore, we obtained all of our results without having to use

a rigorous data-fitting or optimization approach to parameterize our model.

We find that the predictions of the eccentricity theory [50] are mostly correct in

spirit. However, more rigor is required in both (1) the computational optimization

procedure, and (2) the psychophysical backing, in order to establish a solid correspon-

dence between the model and the visual system. In addition, there are two notable

weaknesses in our model: (1) low acuity relative to human vision, and (2) the lack

of a ‘selection mechanism’ for target-flanker simulations. We address approaches for

these in Chapter 7.
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Nevertheless, our model has significant advantages relative to comparable ap-

proaches.

6.1 Comparison to Existing Approaches

There are three general classes of models to compare against: (1) HMAX, (2) CNNs,

and (3) crowding models.

6.1.1 HMAX

The HMAX model is an important basis of comparison for our work. HMAX displays

similar or slightly higher amounts of translation- and scale-invariance, compared to

the ‘incremental’ model [53]. We could tune our model to increase both types of

invariance, under the constraint of biological plausibility (see Section 4.4).

Also, like our model, HMAX has high relevance to the study of crowding. Im-

plementations of HMAX have outperformed benchmark approaches when providing

features for recognition in clutter [58]. Additionally, a peripheral extension of HMAX

obtained qualitative results agreeing with Bouma’s Law [28, 27].

Finally, HMAX can use unsupervised learning techniques [57]. This gives it an

advantage in biological plausibility over our model, which is fully supervised.

Our model uses the same primitives as HMAX—multi-scale filtering, MAX-pooling,

and a linear classifier at the end [58]. Its main advantages lie in its generality and

explanatory power.

In terms of generality, as described in Chapter 2, CNNs are much more power-

ful than any other object recognition technique [33, 19]. This could allow models

like ours to be used in a variety of settings with relatively small amounts of task-

specific adaptation. This is key to the study of crowding, which is highly stimulus-

dependent [63, 16, 32]. Even more importantly, it could help to enable analysis of

more natural and diverse scenes, which would significantly empower studies of the

human visual system.
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In terms of explanatory power, as mentioned previously, CNNs represent the state-

of-the-art in explaining IT neural activity [64]. They have outperformed other ap-

proaches, including HMAX, by far [64]. This suggests that CNNs could be used to

build models of the human ventral stream that are significantly more representative

than competing approaches.

6.1.2 CNNs

As was demonstrated in Chapters 4 and 5, our model has transformation-invariance

and crowding properties that are much more human-like than a ‘flat’ CNN and an

FCN. Traditionally, such ‘single-scale’ networks rely on data augmentation [33, 52]

to improve invariance. Data augmentation feeds CNNs with transformed versions

of data during training, allowing them to ‘memorize’ transformations and improve

recognition odds. In this sense, our model may be advantageous, because it requires

lower sample complexity to achieve invariant performance. In fact, I-Theory pro-

poses that decreasing sample complexity is one of the keys to achieving human-like

performance [50].

It is important to note that our model is optimized for digit recognition, while

other CNNs have tackled the much harder task of natural image recognition [33, 61,

19]. We have begun preliminary work in generalizing our methods to the ImageNet

dataset [55] (see Chapter 7)—it is clear that demonstrating similar results will be

non-trivial.

We also note that current state-of-the-art CNNs can be much ‘deeper’ than ours,

with hundreds to thousands of layers [19]. Such networks can achieve performance far

exceeding that in [33] on ImageNet classification [19]. However, the goal of our model

is human-like performance, rather than performance optimization. Thus, we believe

it is reasonable to limit the depth of our model to 𝑂(10) in the near term [9, 57].

This seems to correlate well with human performance and with the architecture of

the ventral stream [9, 57]

The work in [3] uses multiple resolutions of processing for a CNN, like our model.

It seeks to recognize multiple digits from an image. [3] also uses a recurrent neural
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network to enable several “glimpses” at a large scene. This is somewhat reminiscent

of the notion of saccades in reading [5]. Though our work explores the concept of

multi-resolution processing in a much more in-depth and human-like way, it uses only

one feedforward pass. The use of multiple glimpses in [3] seems to be a key step in

further study of the human visual system.

6.1.3 Crowding Models

As in Chapter 5, we enumerate two major categories of recent computational crowding

models: population coding [18, 62] and statistics [31, 10, 45, 4].

Population coding models typically compute the responses of a large population of

neurons, translating them into probability distributions that predict human subjects’

responses [18, 62]. The work in [62] was able to accurately predict critical spacing

and reproduce foveal-peripheral asymmetry. [18] successfully demonstrated Bouma’s

Law, and additionally showed better performance compared to models of attention,

substitution, and averaging [18].

Unlike these models, ours has no obvious mechanism for spatial attention [18,

62]. By ‘attention,’ we simply mean the ability to select one signal among many,

e.g. choosing a target among flankers. This is an important weakness—even in a

short (<200 ms) presentation setting, attention-related effects have been implicated in

crowding [20], such that it is difficult to completely exclude them from the feedforward

pathway. The lack of a selection mechanism likely contributes to our model’s inability

to reproduce foveal-peripheral asymmetry.

On another axis, however, our model may represent a superset of population

coding models. In some sense, a population code can be approximated with a CNN,

given the correct learned weights. In addition, a CNN can generalize this idea to

diverse settings without pre-configuration. This is unlike [18] and [62], which are

specifically geared towards simple object types.

Unlike population coding models, statistical models often analyze images with a

set of image-related statistics (e.g. correlations) [10, 4, 31, 51]. These statistics de-

scribe the ‘effective representation’ of a crowded object in the ventral stream [10, 4,
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31]. Typically, such models are evaluated by synthesizing images known as “mon-

grels” [31, 4] or “metamers” [10]. Such synthetic images statistically match a given

scene, but appear visually different. They are meant to represent perception in clut-

tered scenes. [51] presents an example image synthesis algorithm, used in [31, 4]. By

evaluating people’s foveal or unconstrained recognition performance on these synthe-

sized images, studies can determine whether the statistics capture the information

lost and preserved by crowding [10, 4, 31].

This method has the advantage of being both general and easy to evaluate psy-

chophysically. However, image synthesis can be computationally intensive, such that

a single image takes hours to synthesize [10, 31]. Though our model is not as easy to

map to psychophysics (as discussed in Section 5.1), it can produce predictions much

more quickly. Specifically, both of our CNN-based models take less than 2 hours to

train and less than a minute to test (see Appendix A). Even a CNN as complex as

the one in [33], which takes about a week to train, can classify over 500 images per

second on a GPU [30]. In addition, CNNs are more explicitly tied to the underlying

neural architecture (see Chapter 2), and can potentially make direct predictions on

the neural level [64].

The statistical model in [45] takes a different approach, modeling statistical com-

putations that involve V1 cells. Like our model, it leads to an explanation for radial-

tangential anisotropy. However, it relies on an assumption regarding the timing of

saccades and attention [45]. Our model does not require this assumption, exclu-

sively considering single-view feedforward processing. In addition, our model rep-

resents more of the ventral stream, and can readily be extended to diverse object

categories. Thus, it could potentially be more broadly applicable, especially consid-

ering that crowding effects are (1) neurologically difficult to isolate, and (2) stimulus-

dependent [63, 16, 32].

We must emphasize that crowding is quite complex, and that there are some

effects which are difficult to capture with any model. For instance, [14] shows a

phenomenon which they call “demasking.” This means that showing a copy of a

target at the fovea can enhance a subject’s ability to identify the same target among
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flankers. This seemingly violates Bouma’s Law in a setting involving relatively short

(≤150 ms) presentations. Similarly, it has been shown that additional flankers can

decrease crowding, even in short (150 ms) presentation settings [22, 41]. In fact, [22]

asserts that crowding currently cannot be reduced to a computational effect, because

visual grouping is too difficult to model.

We do not know of a computational model that accounts for these observations;

nevertheless, they must somehow be incorporated in the quest for a unifying under-

standing of crowding.

6.2 Implications and Applications

In addition to the main findings described previously, our work has the potential for

additional positive impacts.

6.2.1 Modeling Degeneracy

Our results suggest that the feedforward pathway of human vision is degenerate [60].

That is, there are multiple processing routes that accomplish the same general goal.

This is desirable in part because it allows a host of redundant mechanisms, each

of which may (1) evolve and specialize independently, or (2) accommodate for the

failure of another mechanism [60]. In our particular model, we find two different scale

pooling strategies (N6421 and N1111) that explain different aspects of human visual

performance.

Additional evidence for degeneracy comes from [64]. This work used a mixture

of CNNs, with various depths and compositions, to achieve state-of-the-art results

on IT prediction. This suggests that the actual neural architecture may be closer

to a mixture of networks, rather than a single network. Similarly, [57] used bypass

routes in HMAX, as described in [44], achieving a higher-fidelity representation of the

ventral stream. This enabled multiple pathways of processing. Crowding studies have

also observed that the addition of flankers can cause ‘re-emergence’ of information

thought to be lost in pooling [22, 41]. This further implies that information can
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be obtained from multiple pathways. Finally, studies of IT neurons have revealed

nontrivial heterogeneity [7, 40].

We propose that degeneracy should be a cornerstone in subsequent modeling of

the visual system, and that our ‘early’ and ‘incremental’ models can serve as a starting

point.

6.2.2 Engineering Applications

As stated in [50], one of the principal motivators for the eccentricity theory is learning

with low sample complexity. Our model demonstrates this, to some degree. Further-

more, our model incorporates mechanisms which could be used to increase compu-

tational efficiency. For example, the eccentricity-dependent resolution of processing

could conserve resources, supporting high-resolution only where absolutely necessary.

In addition, ‘chevron sampling’ (see Figure 3-4) might further reduce the amount of

computation required. Note that this preserves significant scale-invariance (see Fig-

ure 4-10) and has enabled the main results of this thesis. By introducing techniques

for reducing sample complexity and saving computational resources, this work could

contribute to the development of more data-efficient and performant CNNs.

6.2.3 Predictions, Psychophysics, and Physiology

Most importantly, the generality and neurological grounding of our model can en-

able the generation of various new kinds of predictions for psychophysical evaluation

and neurological comparison. For instance, in Section 4.3, we used the predictions

from [50] to generate computational results, which can now be directly compared

against psychophysics. In addition, we have enumerated two explanatory scale pool-

ing approaches, which can be examined physiologically.

In turn, biological results can be used to further calibrate and improve the model.

This feedback paradigm could be used to develop an increasingly more general and

more explanatory model of the ventral stream.
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Chapter 7

Future Work

We list several major areas of future work, ordered from most immediate to most

long-term.

7.1 Calibration

Most immediately, we can adopt simple measures to improve our model’s fidelity.

First, as mentioned in Chapters 3 and 4, we can increase the model’s resolution. An

order-of-magnitude increase might bring the model closer to human visual resolu-

tion [42], allowing for better simulations.

In addition, considering the distribution of RF sizes in Figure 3-3, we hypothesize

that the human visual system has many more scales than our model. Implementing

a model with more scales could reduce discretization artifacts (e.g. in Figure 3-7 and

possibly in Figure 5-11), improving the quality of simulations.

To achieve even greater fidelity, we could adapt our model for the fovea and

foveola. This is likely to be an important step—these areas are thought to account for

the highest resolutions of visual perception [50]. According to the estimates in [50],

the foveola spans only ≈26 minutes of visual angle, much less than the smallest

scale channel in our model. Thus, matching the foveola would require much higher

resolution. Additionally, the ‘scale channels’ in the fovea seem to display a roughly

exponential pattern of size increase [42, 50]. Modeling this phenomenon may yield
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additional insights into human visual properties.

Ultimately, through simulation and calibration, we could choose a set of scale

channels that follows biological data more closely and allows more human-like per-

formance.

7.2 Other Datasets

As mentioned in Chapter 6, we have started to apply our modeling approach to the

ImageNet dataset [55]. We use Caffe’s version of AlexNet [33, 30] as a baseline. Since

ImageNet provides bounding boxes for some images [55], we can train and test on

properly centered images as a first pass. In order to reduce training time and improve

the probability of convergence, our strategy is to start with a pre-trained network,

provided by Caffe [30], and apply supervised fine-tuning [34].

Applying the model to ImageNet would unlock more possibilities in terms of eval-

uation and iteration. It could possibly be worthwhile to consider other types of data,

e.g. natural scenes from the Places dataset [66], faces as in [21] (also used in [58]),

and keyboard letters/symbols, as in [16].

7.3 Optimization

It is currently difficult for us to perform rigorous optimization, because the behaviors

of interest are sometimes qualitative in nature. It would be interesting to express

these effects in mathematical terms. This would allow us to ‘score’ models based on

their ability to reproduce the right effects. Though it is not clear how this approach

should relate to absolute performance in a scoring metric, some combination of these

two criteria could be informative. A purely quantitative performance metric could in

turn allow more thorough exploration of the parameter space, through optimization

methods as in [64].
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7.4 Degeneracy and Attention

CNNs already implement ‘bypass layers’—GoogLeNet, for instance, uses so-called “in-

ception modules” and achieves an extremely low 6.67% top-5 error on ImageNet [61].

Since Caffe provides concatenation layers to enable this [30, 61], we could easily cre-

ate a degenerate feedforward CNN with multiple pathways. The true challenge lies

not in creating more pathways, but in implementing mechanisms for selection among

their outputs. Thus, the problem of degeneracy is strongly coupled with the notion

of implementing attention in our model.

According to [29], the primate visual system takes in far more information than

the brain can thoroughly process. Thus, the brain necessarily focuses on a small

subset, using attention to control the flow [29]. Even in the absence of saccades

and top-down neural signals, “bottom-up” mechanisms may regulate the allocation of

processing resources on visual input [29]. The authors of this study implemented a

computational saliency map to model such “bottom-up” mechanisms. Similar efforts

would undoubtedly increase the fidelity of our model.

We also note that attention can have many meanings. In addition to spatial

saliency, there may also exist a notion of selecting among many processing pathways,

which may pool information differently [22]. In addition, there is the simple notion

of naming a target in a crowding simulation, mentioned in Section 5.1. Finally, [57]

admits that feedforward timings do not exclude the possibility of “local feedback

loops.” These could modulate allocation of visual processing resources. It could be

worthwhile to explore computational implementations of such functionalities.

7.5 Psychophysics

It is difficult to draw broad conclusions from our psychophysical reference litera-

ture, due to the heterogeneity of timing and masking strategies used in experiments.

Thus, it would be extremely informative to conduct a consistent set of psychophysi-

cal experiments, aimed at assessing our model’s predictions. By assembling a set of
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psychophysical observations that can be easily compared and analyzed against our

model, we can more reliably meet the feedforward assumption of processing and more

effectively develop a correspondence between model and reality.

7.6 Unsupervised Learning

An important drawback of our model, especially in relation to human performance,

is its reliance on fully supervised learning. In contrast, humans clearly do not need

full supervision (i.e. labeling of every input data point) to learn object recognition.

Approaches exist for implementing unsupervised learning in neural networks [23, 34].

By implementing such capabilities in our model, we might gain a better representation

of the human visual system.

7.7 Multiple Saccades

As mentioned in Chapter 6, previous work has used a recurrent neural network (RNN)

to combine information from multiple “glimpses,” with a multi-resolution input at

each [3]. This allows for the recognition of multiple digits in an image [3]. This is an

early step along the ultimate path of vision research—integrating information from

multiple saccades, as humans do [5, 63].

Our model approaches this path from another angle by shedding light on the

feedforward pathway. In the future, combining the feedforward model with an RNN

could bring us closer still to developing a more holistic and detailed understanding of

human vision.
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Appendix A

CNN Details

We present the detailed architectures and training procedures for our CNNs. We also

provide some supplemental analyses on their behaviors. This appendix builds upon

the description of our model in Section 3.2.

A.1 Network Architectures

As mentioned in Chapter 4, we perform simulations with 4 CNNs:

1. the ‘early’ model (N1111)

2. the ‘incremental’ model (N6421)

3. a ‘flat’ CNN operating at one scale

4. a fully-connected network (FCN) operating at one scale

Both the ‘early’ and ‘incremental’ models use ‘chevron sampling’ with 𝑐 = 2 (see

Subsection 3.2.1), for every simulation except for the chevron parameter simulation

in Section 4.4.

In general, our CNNs use the same parameters as the version of LeNet included

with Caffe [36, 30].
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Layer L×W ×D # Scales Kernel Size / Stride / Pad
data 83× 83× 1 7 - / - / -
conv1 40× 40× 32 7 5 / 2 / 0

spatial-pool1 38× 38× 32 7 3 / 1 / 0
scale-pool1 38× 38× 32 7 → 1 - / - / -

conv2 38× 38× 32 1 5 / 1 / 2
spatial-pool2 36× 36× 32 1 3 / 1 / 0
scale-pool2 36× 36× 32 1 → 1 - / - / -

conv3 36× 36× 32 1 5 / 1 / 2
spatial-pool3 34× 34× 32 1 3 / 1 / 0
scale-pool3 34× 34× 32 1 → 1 - / - / -

conv4 34× 34× 32 1 5 / 1 / 2
spatial-pool4 32× 32× 32 1 3 / 1 / 0
scale-pool4 32× 32× 32 1 → 1 - / - / -

fully-connected 1× 1× 10 1 - / - / -

Table A.1: Layers of ‘early’ model (N1111). Data flows from top to bottom.
We use a standard softmax [23, 30] to convert the fully-connected layer outputs
into classification probabilities. Every convolutional (conv) layer uses ReLU non-
linearity [33]. For simplicity, we use padding such that only spatial-pool layers
reduce the spatial dimension.

A.1.1 Layers

The principal layers of the four CNNs mentioned above are listed in Tables A.1, A.2,

A.3, and A.4, respectively.

A.1.2 Layer Details

As discussed in Chapter 3, all pooling layers use the MAX operation. All learned

layers (conv and fully-connected layers) use the same initialization as in Caffe’s

LeNet [36, 30]:

∙ Learning rate multiplier of 1 for filters and 2 for biases

∙ Weights initialized with Caffe’s xavier algorithm [30]

∙ Biases initialized to zero

Also, as Chapter 3 mentions, convolutional filters are constrained to be identical

across scale channels.
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Layer L×W ×D # Scales Kernel Size / Stride / Pad
data 83× 83× 1 7 - / - / -
conv1 40× 40× 32 7 5 / 2 / 0

spatial-pool1 38× 38× 32 7 3 / 1 / 0
scale-pool1 38× 38× 32 7 → 6 - / - / -

conv2 38× 38× 32 6 5 / 1 / 2
spatial-pool2 36× 36× 32 6 3 / 1 / 0
scale-pool2 36× 36× 32 6 → 4 - / - / -

conv3 36× 36× 32 4 5 / 1 / 2
spatial-pool3 34× 34× 32 4 3 / 1 / 0
scale-pool3 34× 34× 32 4 → 2 - / - / -

conv4 34× 34× 32 2 5 / 1 / 2
spatial-pool4 32× 32× 32 2 3 / 1 / 0
scale-pool4 32× 32× 32 2 → 1 - / - / -

fully-connected 1× 1× 10 1 - / - / -

Table A.2: Layers of ‘incremental’ model (N6421). Data flows from top to bot-
tom. Identical to ‘early’ model, except for scale pooling. See caption from Table A.1
for additional notes.

Layer L×W ×D Kernel Size / Stride / Pad
data 83× 83× 1 - / - / -
conv1 79× 79× 32 5 / 1 / 0

spatial-pool1 77× 77× 32 3 / 1 / 0
conv2 73× 73× 32 5 / 1 / 0

spatial-pool2 71× 71× 32 3 / 1 / 0
conv3 67× 67× 32 5 / 1 / 0

spatial-pool3 65× 65× 32 3 / 1 / 0
conv4 61× 61× 32 5 / 1 / 0

spatial-pool4 59× 59× 32 3 / 1 / 0
fully-connected 1× 1× 10 - / - / -

Table A.3: Layers of ‘flat’ CNN. Data flows from top to bottom. This operates
on only one scale of input. For simplicity, we use the same convolution and pooling
strategy at all layers and do not apply padding. We use softmax [23, 30] after the final
layer and ReLU [33] after each conv layer, as discussed in the caption of Table A.1.
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Layer L×W ×D Kernel Size / Stride / Pad
data 581× 581× 1 - / - / -

fully-connected1 1× 1× 32 - / - / -
fully-connected2 1× 1× 32 - / - / -
fully-connected3 1× 1× 32 - / - / -
fully-connected4 1× 1× 32 - / - / -
fully-connected5 1× 1× 10 - / - / -

Table A.4: Layers of FCN. Data flows from top to bottom. This operates on only
one scale of input. We use softmax [23, 30] after the final layer and ReLU [33] after
the first four fully-connected layers, as discussed in the caption of Table A.1.

Parameter Value
base_lr 0.01
momentum 0.9

weight_decay 0.0005
lr_policy inv

gamma 0.0001
power 0.75

max_iter 10,000

Table A.5: Solver parameters. This set of parameters was used to train all of our
networks in Caffe [30]. It is identical to the solver parameters used for Caffe’s LeNet
on MNIST [36, 30].

A.2 Training Procedure

Our training procedure uses the same parameters as for Caffe’s LeNet on MNIST [36,

30], listed in Table A.5. [30] implements these parameters, and provides some docu-

mentation on them. [23] also provides some insight regarding their importance.

We use a batch size of 64 during training, identical to Caffe’s LeNet on MNIST [36,

30]. We train using standard backpropagation [30], explained in [23]. Training is

done on GPUs, using the OpenMind computing cluster [43]. Sample running times

for training and testing are shown in Table A.6. Figures A-1, A-2, A-3, and A-4 show

sample convergence behavior for the ‘early’ model, the ‘incremental’ model, the ‘flat’

CNN, and the FCN, respectively.
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Network Time to Train (sec) Time to Test (sec)
‘early’ model, N1111 1,905 38

‘incremental’ model, N6421 6,986 33
‘flat’ CNN 2,238 88

FCN 7,900 25

Table A.6: Approximate running times. These measurements were conducted on
a single run only. Training used the full MNIST training set [37], with centered digits
of 3∘ height and 10,000 iterations. Testing used the full MNIST test set [37], with
data from one scale-invariance test condition (see Section 4.1).

In terms of iterations, it seems that the model converges as quickly as the ‘flat’

CNN and much faster than the FCN. As expected, later scale pooling leads to more

computationally intensive training. From both the scientific and engineering perspec-

tives, it would be interesting to compare convergence rates and performance in more

depth.
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Figure A-1: Convergence behavior of ‘early’ model. Note the rapid convergence.
These measurements were done when training on the full MNIST training set [37],
using centered digits of 3∘ height. Validation used the full MNIST test set [37], with
the same properties.

Figure A-2: Convergence behavior of ‘incremental’ model. Again, note the
rapid convergence. These measurements were done when training on the full MNIST
training set [37], using centered digits of 3∘ height. Validation used the full MNIST
test set [37], with the same properties.
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Figure A-3: Convergence behavior of ‘flat’ CNN. The network converges rapidly
in the initial phases, then makes slow improvements. Low resolution may give it a
disadvantage versus our model (our goal is to show the advantage of multiple scales,
rather than direct performance comparison). These measurements were done when
training on the full MNIST training set [37], using centered digits of 3∘ height. Vali-
dation used the full MNIST test set [37], with the same properties.

Figure A-4: Convergence behavior of FCN. The network fails to converge for a
while, then learns relatively quickly. These measurements were done when training
on the full MNIST training set [37], using centered digits of 3∘ height. Validation
used the full MNIST test set [37], with the same properties.
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